Skip to content

Explainability with Wize Analytics

Understand pipelines and interpret model outputs to increase trust and eliminate bias.

Model Interpretation and Explainability

Wize Analytics provides critical capabilities for explainable AI, including interactive reports for feature importance, partial dependence plots, subpopulation analysis, and individual prediction explanations. 

Together, these techniques help explain how a model makes decisions and enable data scientists and stakeholders to understand the factors influencing model predictions.


What-if Analysis & Outcome Optimization

Powerful what-if analysis allows both technical users and business experts to test different combinations of inputs and review the impact to predicted results. Simulation capabilities even enable teams to systematically uncover and prescribe changes that would lead to the desired business outcomes. 

With this visual interface for what-if analysis, business users can build trust in predictive models and apply knowledge of model behavior in practical ways.

Disparate Impact and Bias Detection

Wize Analytics provides analyses to uncover segments that may be unfairly or differently treated by a model. Interactive subpopulation analysis allows users to compare model results by group, and disparate impact analysis measures whether a sensitive group receives a given outcome at a rate close to that of the advantaged group. 

With this information in hand, data scientists can produce models that deliver more responsible and equitable outcomes.


Individual Prediction Explanations

Wize Analytics generates row-level prediction explanations (ICE and SHAP) to provide additional information for predicted results.

For both batch and realtime scoring, prediction explanations can be returned as part of the response, which fulfills the need to have reason codes in regulated industries and provides additional information for analysis. 

Automatic Flow and Model Documentation

Wize Analytics automatically generates comprehensive documentation for models and the project flow on a one-off or scheduled basis. Customizable templates include all the metadata and visualizations needed to snapshot the project state or model design and results. 

With robust auto-documentation, organizations maintain consistent records of AI projects for regulatory compliance, and teams can stop spending countless hours maintaining project docs.


Explainable Pipelines

Each Wize Analytics project has a visual flow that transparently represents the pipeline of data transformations and movement from start to finish. Every design decision and step are captured and displayed so current or future team members can clearly follow and explain the sequence of project logic.

See other capabilities of the Wize Analytics platform

Get Started with Wize Analytics

Start an online hosted trial or let one of our data specialists guide you through a demo